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Vibrations of Planar Symmetrical XY, Molecules with

Application to Xenon Tetrafluoride
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A theoretical treatment is given for the harmonic vibrations of
the planar (square) XY, molecular model, including & study of Coriolis
vibration-rotation interactions and the centrifugal distortion. Special
emphasis has been laid on the evalution of mean-square amplitude
matrix elements and related quantities, viz. the mean amplitude of
vibration and shrinkage effects. The theory is applied to xenon
tetrafluoride, for which calculated force constants are reported, along
with numerical results of the above mentioned quantities.

he planar symmetrical (square) XY, model is of considerable interest in

studies of molecular spectroscopy. Xenon tetrafluoride is a famous example
of a molecule with this structure.l,2 An investigation of this molecule by modern
gas electron diffraction would also be of great interest, and might be
undertaken in connection with the intensive studies of xenon tetrafluoride
already in progress.3:* A special reason for such an investigation of xenon
tetrafluoride might be the fact that the shrinkage effects are accessible from
the harmonic-vibration analysis; there exist two types, and in each case the
anharmonic terms vanish.’ Nagarajan ¢ has already performed a spectroscopic
calculation of the mean amplitudes of vibration in xenon tetrafluoride, but
has not carried the investigation further to include the mean-square per-
pendicular amplitudes and shrinkage effects. In the present work these quan-
tities are included, along with additional results from a harmonic-vibration
analysis, namely the Coriolis constants and constants of centrifugal stretching.

SYMMETRY AND ORIENTATION OF COORDINATES

There are some confusing features as to the orientation of symmetry coor-
dinates in the considered molecular model, which should be clarified. The
distribution of normal modes of vibration among the symmetry species of the
appropriate symmetry group (D,,) has been reported as

(a) Alg + By, + Bzg + 4,, + B,, + 2E,
or (b) Alg +‘B 1g+B2g+A2u+Blu+2Eu (l)
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Fig. 1. Notation used for the planar

symmetrical XY, model (D,;). The sym-

bols denote deviations from equilibrium
distances and angles.

There is an ambiguity as to the label designations for B, and B,, and for B,,
and B,,, even when it is adhered strictly to the notation used int zAIhe character
table of Wilson, Decius and Cross.” As a matter of fact the assignments of
an asymmetric stretching and an in-plane bending deformation (in B,, and
B,,), and the out-of-plane rlng deformation (in B,, or B,,), depend on the
chosen designation for the C,’ and C,"’ axes (or ¢, and o, planes). One has the
alternatives:

(a) €y’ along an X-Y bond, and consequently B, as the stretching mode, B,,
as bendmg and the ring deformation in By, and

(b) O, along an intersection of YXY, B,, as bending, B,, as the stretching
and the ring deformation in B,,.

The treatment of Pistorius 8 follows alternative (b), and the same is true
for Pysh et al.,® Yeranos,® and Nagarajan.®,'? Unfortunately all these treat-
ments are in disagreement with the recommendations by Mulliken,'* where
the choice of alternative (a) is prescribed. Presently one has therefore chosen
alternative (a) in spite of the cited previous work, and simultaneously it was
noticed, with pleasure, that this choice agrees with the excellent book of
Nakamoto.!4 This author, however, was apparently confused when quoting
the vibrational frequencies for ions of the considered structure.l®

Fig. 1 shows our orientation of a cartesian system of principal axes. The
choice is consistent with the labelling of polarizability components in the
character table of Wilson et al.,” according to which the («,, — «,y) and a,,
terms should belong to B, and B , respectively. Moreover, the degenerate
pairs of the present symmetry coordinates (S 8;) of species E, (see below)
transform like the rigid translations (T',, T,). They consequently fulfill the
transformation property

ols]-[20 o] [5] @)
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where C, is the symmetry operation of a four-fold axis, which transforms 7',
into T',. This property is consistent with the suggested convention of Boyd
and Longuet-Higgins.18

As a result of the chosen orientations of symmetry coordinates with
respect to the principal axes there emerge very convenient regularities for
the Coriolis constants involving E, coordinates. The constants with respect
to z and y axes contain the b and a components of the normal coordinates
separately. More specifically there is a coupling of 4,, X E, type, which is
described by a Coriolis constant, say, £, OF {4y ({462 + L4r = 1), specified by

Cas = Cass’ = —cm: (3)
0 =Cu = —lans '
while {4,* = {4p” = O for t = 6,7
Another type of Coriolis coupling, viz. By, X E,, follows the rules
{56 = Co6a” = Coep” (4)
{57 = {s1a” = Com”
(s6® + L7 = 1), while 5" = {s4” = 0 for ¢t = 6,7
Next there is a trivial Coriolis coupling of B,, X B, with respect to the z
axis; it involves only one-dimensional species. The E, x E, type on the
other hand, is a very important kind of Coriolis coupling with respect to the z
axis it involves the nonvanishing constants
Lo = Coats’ L7 = Crams’ (5)
$er = Leams’ = Cra0s”

which are connected through the zeta-sum rule
e+ 8;=0 and [, —{t= —1

SYMMETRY COORDINATES

S(Alg) = 271 (ry +ry+ 15+ 1y)

S(Blg) = 20 (ry —rg+ 13— 1,

S('BZg) = 27 R (x)5 — g3 + otgq — gy)

B(dy,) = 2, + 2+ 2+ 2, — 42

S8(By,) = 2y —2+ 23— 2

Su(B,) = 2 (r; — 1), Su(E,) = 2 (rg — 74)

S&(Eu) = 2:1 R (g — 093 — 0tgq + tyy)
S%(Eu) = 271 B (x5 + ag3 — ogq — &)

Redundant: S,(4,,) = 27! B (x;3 + g5 + 034 + ) =0
R is the equilibrium X — Y distance.

MEAN-SQUARE AMPLITUDES OF VIBRATION!

The parallel and perpendicular mean-square amplitudes of vibration
associated with bonded and non-bonded atom pairs are expressed in terms
of the F-matrix elements.
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Y —Y distance (short)

Parallel:

(dz4g®) = %E(Alg) + %Z(Bzg) +32.(E,) + 12,8, + 2—!{212(Eu)
Perpendicular

in plane:

(d1® = $Z(By,) + 3 Z1(E,) + 1 Z5(B,) + 272 4(B,)
out of plane:

{4y,s®> = }Z(B,,)
Y—Y distance (long)

Parallel:

(dz49% = Z(Alg) + Z(By,)
Perpendicular

in plane:

{dz1s? = iE(Bzg)
out of plane:

{4y =0
X—Y distance
Parallel:
(4z% = iZ(Alg) + iz(Bu) + $2(E,)
Perpendicular
in plane:

(x> = _‘}"G'E(‘B2g) + $Z,(E,)
out of plane:
{15 = $52(42) + 15 2(Ba)

Notice that the z, y, and z directions are oriented with respect to each of the
considered distances and do not conform the chosen directions of the principal
system of axes; cf. Fig. 1.

Calculated values of the here considered quantities are found in Table 2.

NUMERICAL COMPUTATIONS

The presently calculated force constants and X-matrix elements for xenon
tetrafluoride are given in Table 1. The calculations are based on vibrational
frequencies from Claassen ef al.!

In the two-dimensional block of species E, one adopted the F,, (Y-X-Y
stretching) constant from the work of Nagarajan.® The force field thus produced
showed general good agreement with that of the cited work.®
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Table 1. Symmetrized force constants (in mdyn/A) and X values (in A2?) for xenon tetra-

fluoride.

Species Fy; Z;i (0°K) 2, (298°K)
A,y F,, = 3.2993 Zy; = 0.0016345 0.0018910
B, F,,= 2.8199 Xy, = 0.0017679 0.0021121
By, F,= 0.0325 X, = 0.0151065 0.0294378
Ay F,,= 0.1500 Z, = 0.0192607 0.0317979
By, F,,= 0.1366 25 = 0.0160634 0.0329268
B, F,,= 26534 2y, = 0.0022077 0.0032407

Foa= 0.211 22y = 0.0162319 0.0548117

F,, = —0.3397 Z,; = 0.0011525 0.0065514 -

Atomic masses: mx, = 131.3, mg = 19.0

Equilibrium Xe—F distance: R = 1.953 A

SHRINKAGE EFFECTS *

In the present case one will expect a linear shrinkage effect for the Y,—Y,
(long) distance and a non-linear shrinkage effect for the Y;—Y, (short) dis-
tance.

Table 2. Parallel and perpendicular mean square amplitudes of vibration in xenon tetra-
fluoride (in A?):

Parallel Perpendicular
in plane out of plane
Distance 0°’K 298°K 0’K 298°K 0°’K 298°K

Y —Y (short) 0.008682  0.024581 ©0.006861 0.021012 0.004016  0.008232
Y—Y (long) 0.003402  0.004003  0.003777  0.007359 0.0 0.0
X—-Y 0.001954  0.002621 0.005002 0.015543 0.002208 0.004045

By definition the linear shrinkage is given by the relation

“—513 = <7'1s> — 2 {rg)
T'b' R [Z(Azu) + Z(Bz.) + 4 ZZ(Eu)]

In the same way one obtains the non-linear shrinkage as follows
—01pp =33 2t B [¢ Z(By) Z(B — 2(4,,) + Z(By,)
+ 4 5B, — 2 Ey) + 3258,
Calculated values are given in Table 3.
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Table 3. Shrinkage effects in xenon tetrafluoride (in A).

Distance 0°K 298°K
Y—Y (short) 0.000641 0.001798
Y—Y (long) 0.003208 0.009088

CORIOLIS COUPLING CONSTANTS

One obtains the following expressions for the Coriolis coupling constants.
A2u X Eu(b)
s’ = —} (mymy/M ) (28 Lgg — Log)
Can” § (mymy/M)} (Ly, — 2% Lgy)
B2u X Eu(b) N
Css” = dmy’ (2} Lgg + Ly
Con” = dmyt (Ly + 2¢ Lgy)
E (a) X E,(0b)
(oo’ = —my M1 [2 my L + My Lyg? + 2! (my + 2 my) Lgg Lyg]
loan' = —my® M (2 Lgg Lgy + Log Lgy) —2 my (mg + 2 my) M
(Lgg Lizg + Lgz L)

Here myx and m, are atomic masses of atoms X and Y, respectively; M is
the total mass of the molecule, and L‘j is used to denote the elements of the
transformation matrix between symmetry and normal coordinates (S = L@Q).

Numerical results for the values of { from the present calculations are
given in Table 4.

I

Table 4. Coriolis coupling constants for xenon tetrafluoride.

Ay, X E, $iea? = —Cp* =  0.8847
Coa? = —bap* = —0.4661
B, x E, $oea? = Lep® = 0.4661
Cs.,“y = C“b" = 0.8847
E (a) x Eu(b) Coaot? = —Coamp® =  0.5654
‘ * Gt = Coagt = —0.8248

CENTRIFUGAL DISTORTION
Kivelson and Wilson !? give the relation
W= Wy, — DJ¥J + 1> — D;xJ(J + 1)K? — D K*

for the rotational energy W of a symmetric rotor. To obtain a more convenient

unit for the constants Dj, Dk, and Dy the above equation is divided throughout
by hc and rewritten as
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Wihe = Wolhe — D;J¥J + 12 — Dy J(J + 1)K2 — DK,
The rotational constants D;, Dy, and D;k are given by

DJ = '_% (3 ttxxx + 3 tyyyy + 2 txx;vy + 4 txyzy)
‘DK = DJ — (tuu L7777 S tyyu —2 tx,“ — 2 tyxy,
Dijx=—D;y — Dy — 4t

2288

Here the coefficients of ¢ are defined by
tapys = B3(2567%) 7 406

where the v quantities are the same as those of Kivelson and Wilson.20
The expression for #,,5 can be written as

tapys = 202 ch™ ByBppByyBssY; Japo™ Jys,0" w2

Here the constants B,,, etc. are the usual rotational constants for the equilib-
rium position of the molecule;

Beza =h (8ﬂ211a)—1

where I,, is the moment of inertia with respect to the «-axis. w, denotes the
i:th normal frequency (cm™). Jogo® is the first derivative of the appropriate
component of the moment of inertia tensor with respect to the i:th normal
coordinate (@,) taken at the equilibrium position.

From the character table for the group Dy one easily deduces that the
only non-zero f{,gys must be

txxxx = tyyyy’ tx«"y}” tuu’ txxu = tyyﬂ a’nd t*’)’»"}"

One finds the following results.

bivaw = byyyy = —8n%ch B, AR? my (aul“2 + wy2)
Leryy = ——87:2 chB,AR? my (au1 — wy ?)

tiyry = —8n? h‘lB 4R2 My wg 2

bire = —-27:267»"134“,}132 My ©

xxsz tyysz = 2 3558

Subscripts 1, 2, and 3 refer to the 4,, B,,, and B,, species, respectively.
Finally one obtains the following results for]ﬁ;he rotatlonal constants Dj, Dy,
and Djk in the planar symmetrical XY, molecule.

D ] = —3 txxxx - txxyy — 2 txyxy
DK = DJ + 12 ¢,
Dy = —2 Dy — 16 by,

which also gives the following relationship between the three constants
Djx = —% (D; + 2 Dy)

Numerical values for #,gy5, D, Dy, and D;x are presented in Table 5.

Experimental values of centrifugal distortion constants are often used as
additional information for accurate determination of the force field of a
molecule. In the present case, however, it is seen that such information would
be of no use, since the two-dimensional E, species gives no contribution to
the 7,py5 quantities.
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Table 5. Centrifugal distortion coefficients (in em™) for xenon tetrafluoride.
biie = by = — 5.795 x 107
tyxss = byys: = — 1335 x 107°
- ~14.258 x 10
bz = oo — 0.668 x 107
byayy = woer 0.454 x 107
by = 4.545 X 10°
Dy = ... 3.743 x 107t
Dy = .. — 8.021 x 107
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